City of Fairfield Wireless Traffic Signal Communication

Kevin Daughton, Transportation Manager Steven Harris, Traffic Signal Technician

Elbert Chang, Senior Engineer

Presentation Outline

- ITS System Overview and Goals (Kevin Daughton)
- System Design and Construction (Elbert Chang)
- Planned Upgrades & Maintenance Experiences (Steve Harris)

System Overview and Goals

- Fairfield, California (pop: 105,000) is located halfway between San Francisco and Sacramento.
- System implementation part of a larger City and Countywide ITS program.
 - Need to consider interactions of controller and communications system with other elements (e.g. emergency vehicle pre-emption, transit priority and AVL).

City of Fairfield Intelligent Transportation System (ITS) Program 10/12/05 Fairfield ATMS Server ATMS Workstations Intersection Controller Transit Priority emitters (completed) I Pre-emption/ Spread Spectrum I transit priority Communication detectors (first phase completed) Fire Vehicle pre-emption emitters (completed) Signal Maintenance Van (completed) Intersection Traffic Signal

City of Fairfield Intelligent Transportation System (ITS) Program 10/12/05 Fairfield ATMS Server FST AVL Server (future) AVL/ Transit Priority System (in design) ATMS Workstations Wireless communication Intersection (future) Controller Transit Priority emitters (completed) I Pre-emption/ Spread Spectrum I transit priority Communication detectors (first phase completed) Fire Vehicle pre-emption emitters (completed) Signal Maintenance Van (completed) Intersection Traffic Signal

Project Costs

Engineering \$209,000

Equipment \$577,000

Construction \$118,000

Total \$904,000

(40 signals/\$904K = \$23K/signal)

Project Scope and Existing Interconnect

- Upgrade 40+ controllers (on six arterials) and provide communications between them and ATMS.
 - Wireless method chosen for quicker deployment, reduced installation cost over wireline.
- Existing Copper Interconnect
 - ◆ Gateway Avenue (3 signals)
 - ◆ Downtown West Texas Street (4 signals)
- Wireless Interconnect on North Texas Street (6 signals)

System Design and Features

- Upgrade equipment on existing wireless interconnect
 - ◆ IP/Ethernet-based, faster bandwidth
- ATMS at the Fairfield Transportation Center
- Repeater site located at Martin Hill (to address line of site issues)
- Interface with existing wireless and copper interconnect

Fairfield Arterial Management Network

System Diagram

Typical Intersection Installation

Martin Hill Repeater Site

Panoramic View from Martin Hill

Fairfield Transportation Center

Signal Maintenance Van

Some of the technical challenges addressed during the design and construction (1/2)

- Signal Strength/Background Interference
 - Site-and-path analysis (Need to rely on copper for some locations)
- Repeater Site Design
 - Number of radios, antenna separation
- Communications Equipment
 - City procurement of equipment
 - Bench test

Some of the technical challenges addressed during the design and construction (2/2)

- Antenna Cable Signal Loss
 - ◆ Antenna length less than 100 feet recommended for small cable (1" bending radius)
 - ◆ For longer distances, low loss antenna cable (thicker) needed. Used smaller cable from antenna to nearest adjacent pull box and then connected to low loss antenna cable.
- Changes in Wireless Technology
 - ◆ System Design in 2002. If restarting design may consider other technologies (e.g. Wi-Max?, Mesh?)

Planned Upgrades

- Communication equipment for remaining City signals (approx 40)
- Use wireless system to interface directly with pre-emption phase selector
 - County-wide vehicle pre-emption codes
- Access to Streetwise ATMS server over internet (secure connection)
- Wireless communication with service van

Maintenance Experiences

- Save time/ labor by loading timing plans remotely
- Streetwise ATMS Server has gone down
 - ◆ Van to serve as back-up to server.
 - ◆ Firmware upgrade of radios, server, controller needed to allow this to happen.
- E-mail signal trouble notification implementation

Questions and Answers

City of Fairfield Wireless Traffic Signal Communication

Kevin Daughton, Transportation Manager Steven Harris, Traffic Signal Technician

Elbert Chang, Senior Engineer